Ken Bossong puts the start-up of the first U.S. nuclear reactor in 20 years in perspective. To say that renewables are growing faster than nuclear is an understatement. Yet the nuclear industry is likely to trumpet Watts Bar 2 coming online as a big triumph. That is, once the reactor gets past the series of equipment failures that has repeatedly delayed the start-up since June. The Tennessee Valley Authority has spent nine years and more than US$4 billion to bring a 43-year old nuclear construction project to completion, when it could have used that time and money more productively on developing renewables and energy efficiency.
As it nears commercial operation, Watts Bar 2, the first "new" nuclear power plant in the United States in more than a generation, is proof that nuclear power has lost the race with safer, cleaner, and more economical renewable energy sources ‒ particularly solar and wind.
New electrical generation expected to be provided to the nation's grid by Watts Bar 2 during its first year of operating at full capacity has already been eclipsed several times over by new electrical generation provided by renewables.
For example, in just one year's time (i.e., July 1, 2015 to June 30, 2016) as Watts Bar 2 prepared for commercial operation, solar and wind alone increased their contribution to the nation's total electrical generation by an amount three to five times greater than that expected from a year's worth of Watts Bar 2 generation (detailed supporting calculations are posted on the GreenWorld website1).
If one adds in the net increase in generation from other renewable energy sources (i.e., hydropower, geothermal, and biomass) during the past year, the ratio of new renewables generation to that of Watts Bar 2 is even greater.
Looking ahead, the U.S. Energy Information Administration (EIA) is projecting 9.5% growth in electrical consumption from renewable sources during 2016 with further increases in the years to follow.2 Thus, the ratio of new renewable electricity capacity and generation vs. that from Watts Bar is likely to be even greater in the coming year and beyond.
Additionally, the very limited contribution to be made by Watts Bar-2 to the nation's electrical generating capacity hardly seems to have been worth the wait. Construction of Watts Bar-2 originally began in 1973, but was halted in 1985. The project was restarted in October 2007 and finally completed in summer 2016. Thus, not including the period while the plant construction was suspended, it took roughly 22 years to bring Watts Bar 2 online.3
During the eight-year period (2007-2015) required to build Watts Bar 2 following the resumption of construction, the reactor obviously produced no electricity. At the same time, however, new wind and solar plants ‒ which typically require only one or two years to construct and often less4 ‒ were coming online at an increasing pace and contributing to the nation's electricity supply. In fact, during the 2007‒2015 period, wind and solar produced about 15 times more electricity than is projected to come from Watts Bar 2 in the coming year.1
Moreover, since the resumption of construction of Watts Bar 2 in 2007, actual annual electrical generation by wind and solar has mushroomed. Today, those renewable sources are providing over 21 times more electricity each year than that expected annually from Watts Bar-2 ... and growing rapidly.1
Finally, when construction resumed on Watts Bar Unit 2 in 2007, TVA assumed the cost would be US$2.5 billion to complete. Upon completion, though, the actual costs totaled US$4.7 billion. This translates into a cost of approximately US$4.1 million per MW of capacity.5
While nuclear construction costs ‒ as represented by those for Watts Bar 2 ‒ have risen dramatically, those for solar and wind have plunged by 60‒70% over the same time period.
For example, in a November 2015 study, the New York investment bank Lazard reported current electricity production costs of nuclear power to be US$97‒136 per MWh. In comparison, the best large-scale photovoltaic power plants can now produce electricity at US$50 per MWh while onshore wind turbines can do so for US$32‒77 per MWh.6
Thus, as illustrated by Watts Bar 2, the pace at which new renewable capacity and actual electrical generation ‒ particularly wind and solar ‒ are exceeding that of nuclear, the long construction times to bring new nuclear reactors on line, and nuclear power's rapidly rising costs (compared to the dramatically declining costs for renewable sources) all underscore that the nuclear era is over. Watts Bar 2 is proof that nuclear power has lost the race against renewable energy.
References:
1. http://safeenergy.org/2016/10/05/watts-bar-2-winning-a-battle-while-losi...
2. www.eia.gov/forecasts/steo/report/renew_co2.cfm
3. https://morningconsult.com/alert/first-new-nuclear-reactor-almost-two-de...
4. See, for example, www.ewea.org/wind-energy-basics/faq
5. https://morningconsult.com/alert/first-new-nuclear-reactor-almost-two-de...
6. www.lazard.com/perspective/levelized-cost-of-energy-analysis-90
See also:
www.eia.gov/forecasts/aeo/electricity_generation.cfm
www.eia.gov/tools/faqs/faq.cfm?id=19&t=3