

NUCLEAR MONITOR

March 29, 2024 | Issue #914

A PUBLICATION OF WORLD INFORMATION SERVICE ON ENERGY (WISE)
AND THE NUCLEAR INFORMATION & RESOURCE SERVICE (NIRS)

WISE/NIRS

Nuclear Monitor

The World Information Service on Energy (WISE) was founded in 1978 and is based in the Netherlands.

The Nuclear Information & Resource Service (NIRS) was founded in the same year and is based in the U.S. WISE and NIRS joined forces in the year 2000 to produce Nuclear Monitor.

Nuclear Monitor is published in English, 10 times a year, in electronic (PDF) format only. Back issues are published on the WISE website two months after being sent to subscribers (www.wiseinternational.org/nuclear-monitor).

SUBSCRIPTIONS

10 issues

NGOs / individuals 67,50 Euros

Institutions / Industry 235 Euros

US and Canada: Contact NIRS for details (nirs@nirs.org)

All other countries: Subscribe via the WISE website

www.wiseinternational.org

ISSN: 2542-5439

CONTACTS

WISE

info@wiseinternational.org

www.wiseinternational.org

NIRS

nirs@nirs.org

www.nirs.org

Nuclear Monitor

monitor@wiseinternational.org

www.wiseinternational.org/nuclear-monitor

Monitored this issue:

The cost of “new era” nuclear: the unbearable lightness of EDF, by Greenpeace France. In 2007, the EDF Energy Chief Executive claimed that by Christmas 2017 British turkeys would be cooked using “new era” nuclear energy. The first high-density concrete for the first EPR unit was finally poured in December 2018 at Hinkley Point C and commissioning of the reactors pushed back to 2030. 2

Myth Buster: Nuclear energy is a dangerous distraction, By CAN Europe. Recently Climate Action Network Europe finished a position paper on nuclear energy. Because it contains a good summary of the most important objections to nuclear energy, the Nuclear Monitor prints the paper in its entirety. 4

Protest against nuclear waste dump upriver Canada’s capital, by Jan van Evert, Environmental groups and Indigenous chiefs pressed the Canadian government on February 14th to overturn regulatory approval for a nuclear waste dump upriver from Canada’s capital. 9

Nuclear News

- World Nuclear Power Status

10

The cost of “new era” nuclear: the unbearable lightness of EDF

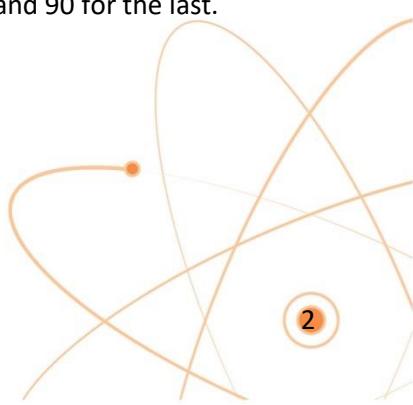
Report by Greenpeace France

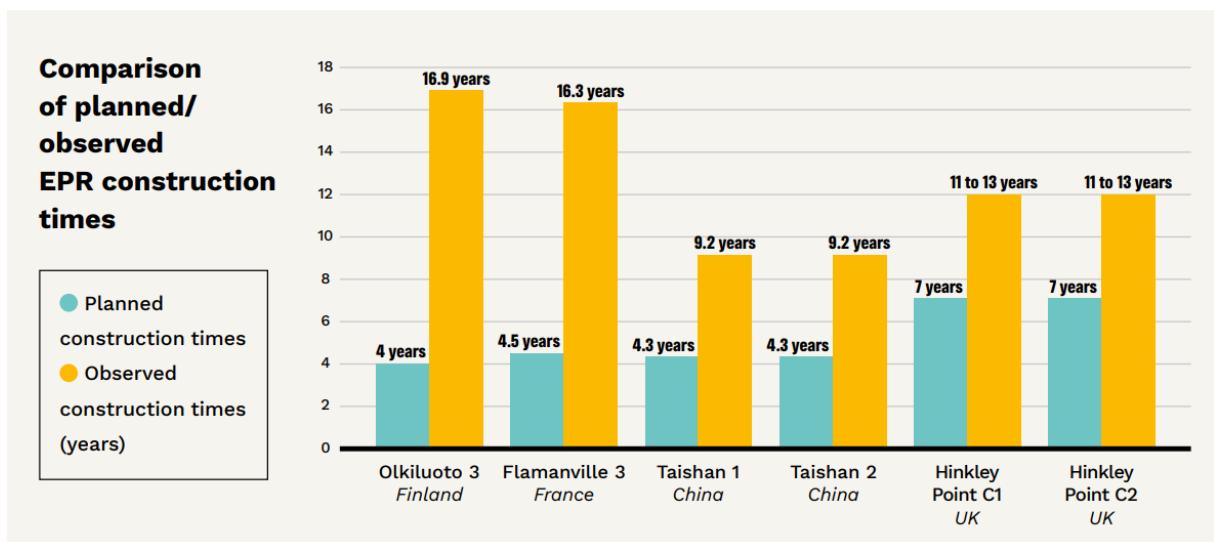
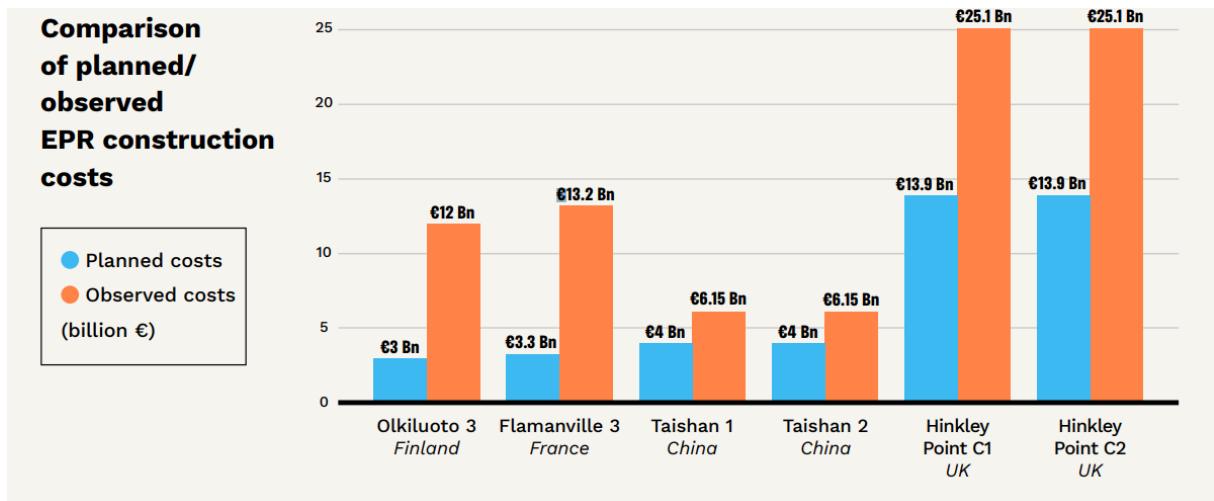
In 2007, the EDF Energy Chief Executive claimed that by Christmas 2017 British turkeys would be cooked using “new era” nuclear energy. The first high-density concrete for the first EPR unit was finally poured in December 2018 at Hinkley Point C and commissioning of the reactors pushed back to 2030.

This anecdote illustrates the story of an EPR sector which, over time, has become a global-scale industrial and economic fiasco involving a systematic underestimation of costs and construction times for EPR reactors. In light of this experience and the current capabilities of the French nuclear industry, neither the cost nor the timetable announced by EDF for the “new era” nuclear program to build six EPR2 nuclear reactors can be considered credible.

A questionable preparedness

Successive upward reassessments of project costs and the recent delay in finalizing detailed EPR2 plans demonstrates a lack of preparedness on the part of the nuclear industry and the hastiness of efforts to expand nuclear production. These reassessments invalidate the hypothetical RTE scenario of an energy mix including “new era” nuclear on which political and economic decision-makers are counting to take decisions. They discredit the findings of initial audits conducted on program costs and raise the question of whether these auditing firms can be objective. The choice of NucAdvisor and Accuracy for this work is questionable to say the least given their connection to the EPR fiasco. Accuracy has been involved in financial assessments for


several EPR projects that have run far over initial budgets, including Flamanville; NucAdvisor is staffed with former nuclear industry executives involved in several catastrophic projects. These auditing firms have only roughly validated initial financial estimates without testing them against the ample feedback available on the subject (French Court of Auditors, the Jean-Martin Folz Report, Greenpeace assessments and more).



A compromised profitability

If no one can say exactly how much six EPR2 reactors will ultimately cost while the project is in the development stage, it is likely that spending and delays will continue to rise substantially. Scenarios evaluated by Greenpeace suggest a bill of more than € 100 billion including financing costs, for a per-MWh electricity production cost of between € 135 and € 176, far from the current reference of € 70/MWh. This thoroughly compromises the profitability of the “new era” nuclear project and its consequences for taxpayers and public finances could be unsustainable.

Underestimated construction times

Construction times announced for the six EPR2 reactors are equally unrealistic in light of feedback from the EPR industry: EPR reactors currently in service around the world took 156 months on average to build, but EDF predicts that 105 months will be needed to build the first EPR2 reactor and 90 for the last.

An overoptimistic “series effect”

EDF is planning a program that counts on cost savings and deadlines shortened by a ‘series effect’, but the track record of the EPR sector, to the contrary, demonstrates a series of disasters with astronomical additional costs and systematic delays on all sites.

A lack of transparency

This report highlights the urgent necessity for more transparency on the figures presented by EDF for the “new era” nuclear program and the publication of auditing reports in their entirety in order to hold an informed debate before taking a decision that will weigh heavily on the French population for decades. Once again, EDF and the French government are

employing a ‘done deal’ strategy to launch colossal projects before preliminary plans are even completed and despite uncertainties as to the feasibility of such a program or whether it can meet costs and deadlines. This is inadmissible in light of the energy, climate and financial issues at stake. Emmanuel Macron’s decision to approve new nuclear production in France with the construction of six or even 14 EPR2 reactors flies in the face of economic and industrial realities and is a recipe for an even bigger disaster than EPR 1.0.

A risky “whatever the cost” policy

By persisting in the illusion that “new era” nuclear is needed “whatever the cost” – over € 100 billion for six EPR2 reactors, in this case

– Emmanuel Macron and his government are sabotaging the energy transition and French and European climate objectives. The amounts at play should be invested in measures that reduce greenhouse gas emissions far more quickly and efficiently: Zsobriety, energy efficiency and the development of renewable energies.

The full report is written in French and can be downloaded here:
<https://www.greenpeace.fr/cout-nouveau-nucleaire-insoutenable-legerete-edf/>

Myth Buster: Nuclear energy is a dangerous distraction

By CAN Europe

Recently Climate Action Network Europe finished a position paper on nuclear energy. Because it contains a good summary of the most important objections to nuclear energy, we decided to print the paper in its entirety. You can find it also on the site of Can Europe: <https://caneurope.org/myth-buster-nuclear-energy/>

More than three-quarters of the EU's greenhouse gas emissions stem from our energy consumption, therefore it is vital to stop burning fossil fuels to avert a climate catastrophe. Fortunately, quick, safe, and proven solutions are available and can be rolled out today: Wind and solar energy have become the cheapest source of energy and just within the past year, they grew so fast that newly installed renewables managed to reduce the EU's greenhouse gas emissions from electricity by 19% while saving consumers an estimated € 50bn on their energy bills.

Yet, there is a strong lobby that hopes to rival the success of renewables: the nuclear industry, fighting for influence and watering down EU climate legislation when it suits their own interests. This development is creating significant tension with proponents of a fully renewable energy system and marks a regressive step in efforts towards a sustainable and just energy transition. While

nuclear champions claim that nuclear energy can work hand-in-hand with renewables, it is becoming increasingly clear that nuclear power acts as a significant hurdle to the roll-out of renewables and fossil fuel phase-out.

Myth #1: The recent nuclear push is not a campaign against renewables

Fact #1: Nuclear advocates have attempted to lower renewable energy ambition

In the context of the Renewable Energy Directive (RED III) revision, France tested the waters in 2023 by calling for a low-carbon 'weighting' in EU renewables target in order to support a higher EU 2030 renewable energy target of 45%, where so-called 'low carbon' energy sources are taken into account when establishing national renewable energy targets. Though this did not see the light, a concession was won on renewable hydrogen and provisions to facilitate nuclear-produced hydrogen – risking further watering down a renewables-based technology pathway.

The EU Commission launched its proposal for the Net Zero Industry Act (NZIA) in March 2023 as a response to the Inflation Reduction Act (IRA) of the United States. While nuclear was included as a list of technologies that were seen as making a contribution to decarbonization, the EU Commission

President, Ursula von der Leyen, refused to include it in the list of “strategic technologies”, which could receive additional support. The list was limited, as to be better targeted, at technologies such as solar, wind, energy storage, heat pumps and grid technologies. Following intense lobbying and political pressure, the final political agreement has led to the inclusion of “nuclear fission energy technologies” as strategic, while this debate allowed the list to become so extensive it practically loses any strategic element.

Pro-nuclear member states have made dirty deals with the fossil lobby

During the Electricity Market Design reform, nuclear and fossil fuel promoters in the European Parliament attempted to derail a deal supporting renewables and flexibility. In the Council, due to the focus of the Nuclear Alliance on the Contracts for Difference (supported by some coal dependent countries) the negotiations were delayed by several months and conversations redirected away from renewables, leading to a deal supporting subsidies for existing and new nuclear reactors and a prolongation of subsidies to coal power plants via capacity mechanisms.

The nuclear debate is wasting time and diverting attention

As the nuclear debate aggressively dominates political negotiations, media, and public discourse, it blatantly diverts critical attention from advancing the existing, affordable, sustainable solutions to the energy transition. This overwhelming focus on nuclear power not only overshadows but also poses a risk of derailing the European energy transition, hindering progress towards aligning with the ambitious yet achievable goal of a 100% renewable energy system by 2040.

Myth #2: New nuclear is an effective solution to align Europe to the Paris Agreement and keep global temperature increase to 1.5°C

Fact #2: New nuclear construction is too slow

A rapid transition requires the use of existing technologies and solutions which can most quickly be rolled-out such as renewables, primarily solar and wind, energy efficiency, and system flexibility. For years, new nuclear energy projects in Europe have been plagued with delays and coupled with an untrained workforce, are unable to support the speed of decarbonization necessary. New nuclear plants typically take 15-20 years for construction, hence failing to address immediate decarbonization needs to 2030. Indicatively, France’s six new reactors are estimated by its network operator to enter into use in 2040-2049, much too late to have any meaningful impact on emissions reduction needed already now, with a view to pathways to 2040, and beyond, for a sustainable future.

The decision to build the UK’s Hinkley Point C nuclear reactor was announced in 2007 with an operational start date of 2017, however it has been delayed several times over, and is now estimated to start in 2031. In France, the Flamanville project is 16 years into construction and hitting new delays, while Finland’s Olkiluoto took a full 18 years to come online.

Nuclear power is too expensive

When compared to renewables, the latest analysis from World Nuclear Industry Status Report, using the data from Lazard, determines that the levelized cost of energy (LCOE) for new nuclear plants makes it the most expensive generator, estimated to be nearly four times more expensive than onshore wind, while unsubsidized solar and wind combined with energy storage (to ensure grid balancing) is always cheaper than new nuclear.

Recent European projects in Slovakia, the UK, France, and Finland demonstrate the dramatic rising costs. EDF admitted that the costs for the British nuclear facility Hinkley Point C will skyrocket to 53.8 billion euros for the scheduled 3.2 GW power plant, more than twice as much as scheduled in 2015 when the plant was approved. The French project in Flamanville was originally projected to cost 3.3

billion euros when it began construction in 2007, but has since risen to 13.2 billion euros (16.87 billion euros in today's money). The Finnish Olkiluoto-3 project 1.6GW reactor cost 3 times more than the original forecast price, reaching 11 billion euros. Slovakia's second generation reactors Mochovce 3 and 4 ballooned costs to 6.4 billion euros from an initially estimated 2.8 billion. Slovenia's president announced that a new 1.6GW reactor would cost 11 billion euros, following the Finnish example, demonstrating that these high prices are here to stay.

Renewables and energy efficiency are cheaper alternatives

When compared against energy savings, analysis by Hungarian NGO Clean Air Action Group highlights that it is more economically efficient to invest in the renovation of households to save energy than in the construction, operation, and decommissioning of a new nuclear reactor. These findings were confirmed by a separate study by Greenpeace France, that showed that by investing 52 billion euros in a mix of onshore wind infrastructure/photovoltaic panels on large roofs, it would be possible to avoid four times more CO2 emissions than by investing the same amount in the construction of six EPR2 nuclear reactors by 2050, while electricity production triples. By investing 85 billion euros of government subsidies in energy savings by 2033, it would be possible to avoid six times more cumulative CO2 emissions by 2050 than with the construction program of six EPR 2 reactors. This would also make it possible to lift almost 12 million people out of energy poverty in a decade.

In order to finance new and ongoing projects, the EU has approved State Aid for nuclear, in the case of Hungary, Belgium, and the United Kingdom, while national governments seek support schemes. Despite making references to technology-neutrality, this creates an unlevel playing field slanted against renewable energy. Given the significant investment gap to achieve 2030 climate targets, and the limited fiscal space of many Member States, investments in nuclear risk diverting precious public resources into projects of poor value-

for-money compared to alternatives in a renewables-based system, while reducing the availability of public resources for all other components of the energy transition. Such a choice would equally fail to reduce prices for consumers in the context of the current fossil fuel energy crisis.

Nuclear power includes many additional hidden costs

The costs would be even larger if accounting for "unpaid externalities" borne by taxpayers and the public at large, from nuclear accident risks that are impossible to insure against by private actors. The costs of decommissioning of a nuclear power plant, which can cost 1-1.5 billion euros per 1000 MW, are often borne by the public as these costs are poorly taken into account when planning a new nuclear installation. The cost associated with storing radioactive waste for hundreds of thousands of years is also often undervalued, alongside costs associated with radioactive leaks from plants or storage facilities, as demonstrated by the radioactive leaks in the UK Sellafield site, causing tension with Ireland and Norway. To lower costs, attempted lowering of safety and environmental standards can be expected, posing risks to communities, nature, and society at large, also as a burden to future generations.

Myth #3: New innovation will solve the issues of cost and inflexibility

Fact #3: Small Modular Reactors are not coming to save us

Argued to be more flexible, decentralized, smaller, and cheaper than existing nuclear designs, countries are wasting public resources in favor of non-existent Small Modular Reactor (SMRs), riddled with the same limitations as their predecessors, and presenting poor value-for-money compared to existing alternatives. The focus on SMRs risks delaying the development of renewable energy technologies already available at the moment, and thereby prolonging the usage of fossil fuels.

Burdened by the same high capital costs, SMRs would have to run near constantly to reduce losses, thereby further congesting the

grid and making them useless in providing back-up power needed for peak hours against renewables and energy storage.

Small Modular Reactors are untested

Only few SMRs in China and Russia are currently in operation. Since the technology has not been tested yet at commercial scale, claims that the industry is making about their supposedly faster construction and lower costs are therefore purely speculative at this stage. An SMR project that was planned in the US state of Utah, was terminated in November 2023 as local authorities that were meant to buy the electricity pulled out due to rising costs. The same company that failed with this project intends to build SMRs in Romania, Kazakhstan, Poland and Ukraine.

Myth #4: A 100% renewable energy system is unfeasible, and renewables must work together with nuclear

Fact #4: Studies demonstrate that 100% renewable by 2040 is feasible and favorable

The Paris Agreement Compatible (PAC) scenario, developed by civil society and experts, emphasises renewables-based electrification and energy demand reduction, calling for determined and heightened attention to enable a 100% renewables-based EU energy system by 2040, and foresees no need for nuclear power in Europe. A fully renewables-based energy system even functions in times of low wind and at night, when the sun is not shining. The solution to still provide the required amount of power needed during these times is a combination of flexibility (such as energy storage) and demand-side measures. The myth of the need for nuclear baseload has been debunked for years. The energy system can be reliably and safely managed with 100% renewables and system flexibility.

Nuclear power production is not reliable

Nuclear power units across Europe have been proven as unreliable in providing power when needed. Future climatic conditions, such as heatwaves, droughts, flooding and rising sea-

levels only increase the likelihood of future nuclear power plant disconnections and pose further security risks. In 2022, on average French nuclear reactors had 152 days with zero-production. Over half of the French nuclear reactor fleet was not available during at least one-third of the year, one-third was not available for more than half of the year, and 98% of the year 10 reactors or more did not provide any power for at least part of the day.

Nuclear power blocks renewables integration into the electricity grid

The inflexibility of nuclear, caused by technical limitations, safety requirements and economic factors, prevents the feed-in of renewable electricity into the grid, causing grid congestion and curtailment. Nuclear's dominance over grid capacity can block the connection of new renewable energy projects, where even announced and then abandoned plans for a new nuclear unit can delay renewable projects connection, allowing for continued fossil fuel usage. Grid structures designed for large-scale, centralized nuclear power, make it more challenging, time-consuming and costly to introduce small-scale distributed renewable power.

An example can be found in Romania where Cernavodă 3 and 4 reactors have reserved grid capacity for years, blocking new renewable energy projects in the Dobrogea region, the most wind-intensive region in the country. Delayed grid investments, due to uncertainty of new nuclear units, have also meant that capacity bottlenecks exist today for renewables online.

In the Netherlands, the only current nuclear power station, Borssele is competing for landing space for off-shore electricity.

Post-Fukushima, renewables were blocked from connecting to the grid in Japan as the government considered restarting the reactors, despite public opposition to nuclear restarts and support for renewables. Rather than taking the opportunity to invest in grids and integrate renewables twenty years ago, Japan still heavily relies on fossil fuels today.

Myth #5: Nuclear energy supports the EU's plans for energy autonomy

Fact #5: Nuclear power means continued reliance on Russia and imports

Nuclear power units equally fail to pass an “energy security” test, and run counter to the RepowerEU target of enhancing Europe’s autonomy, given that more than 40% of the EU’s Uranium is imported from Russia and no EU country is currently mining uranium within its own borders. Though Kazakhstan is seen as an alternative, its uranium industry is directly tied to Rosatom, Russia’s state atomic energy company. While import bans have been placed on Russian coal and liquified natural gas, and Russian oil and natural gas have been targeted, this has not been the case for uranium.

Myth #6: Nuclear energy is safe

Fact #6: Severe nuclear accidents remain possible, and climate change is adding new risks

Nuclear technology inherently carries the risk of severe nuclear accidents with the release of large amounts of radioactivity as shown by catastrophic accidents in Fukushima or Chornobyl. Extreme and more frequent weather events due to climate change create unprecedented risks through storms or flooding that are not captured in planning standards for nuclear plants based on historic frequencies and severeness. Extreme weather events may also indirectly affect nuclear plants, such as breaking dams above nuclear plants or longer disconnection from electricity grids after storms. Cyber attacks, military aggression e.g. Russia’s occupation of the Zaporizhzhia Nuclear Power Plant, and terrorist attacks, e.g. via drone attacks, could also lead to severe accidents of nuclear plants.

Nuclear waste remains a risk worldwide

Nuclear waste is a risk to the health of all living creatures, including humans, for thousands of years after its use in energy production. Management of any future storage facility would still be at risk of natural disasters and decisions of future generations,

whereas currently without any long-term solutions risks are increasingly shifting to interim storage which were not planned for the current supply and length of storage.

Conclusions

- The climate movement has rightly focused its efforts on achieving a fast, fair and full phase out of fossil fuels with remarkable successes, although major fights are still ahead of us. Renewable energy has seen massive growth rates in many European countries and this development is a win for everyone: People as they benefit from lower energy prices, communities where they are part of benefit sharing schemes and the climate due to much reduced greenhouse gas emissions. We therefore conclude and demand:
- Nuclear energy is undermining renewables due to the aforementioned issues and must not be portrayed as an alternative or partner for renewables in the energy transition.
- New nuclear energy in Europe is too slow, and too expensive to meaningfully contribute to the decarbonisation of the energy system by 2040. This pathway is a distraction which only delays fossil fuel phase-out and renewables uptake.
- Small Modular Reactors are an unproven technology and, like conventional nuclear reactor designs, are unable to contribute meaningfully to decarbonisation. If developed, these units would increase the price for electricity, the levels of radioactive waste and risk the proliferation of nuclear materials.
- CAN Europe calls for a 100% renewable energy system by 2040, and therefore a managed phase-out and decommissioning of Europe’s existing nuclear fleet is required by 2040 at the latest to ensure a safe and sustainable future.
- Prolongation must not divert public funds away from renewables and energy

efficiency solutions and hinder the integration of renewables in the surrounding area. The prolongation of existing nuclear reactors risks safety as old units are pushed well beyond their original foreseen lifespans.

- Every euro invested in nuclear is a euro not invested in renewables and energy efficiency. For this reason, public finance should remain inaccessible to nuclear, as it should be prioritized on cost-effective, sustainable solutions. This includes the EU's Multiannual Financial Framework and EU funds such as the Just Transition Fund, Modernisation Fund, Innovation Fund, InvestEU, etc, and investments from the European Investment Bank.
- Renewable energy targets remain an essential tool for the European energy

transition, and must be defended against any attempts to water them down through the inclusion of nuclear power. A so-called "low-carbon" directive with "low-carbon" targets would decimate the rate of renewable energy integration, which is already off track, and prevent the EU from aligning with Paris-agreement emissions reduction. Additionally, this opens the backdoor for other false solutions like fossil gas and carbon-capture and storage (CCS).

- Nuclear power and fossil gas should be excluded from the EU taxonomy for sustainable activities.

Download the **Nuclear energy is a dangerous distraction mythbuster** in PDF [here](#).

Published on 19/03/2024

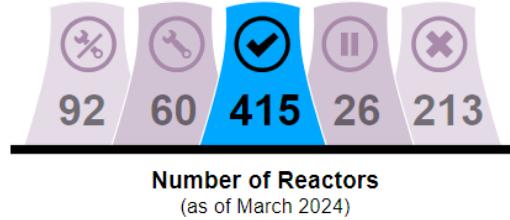
Protest against nuclear waste dump upriver Canada's capital

Jan van Evert, editor Nuclear Monitor

Environmental groups and Indigenous chiefs pressed the Canadian government on February 14th to overturn regulatory approval for a nuclear waste dump upriver from Canada's capital, fearing the contamination of its drinking water, AFP reports.

Indigenous chiefs and elders, leaders of opposition parties the Bloc Québécois and Green Party, and several environmental groups are protesting against a decision of the Canadian Nuclear Safety Commission (CNSC) last month to approve the waste site in the town of Chalk River, 180 kilometers (110 miles) north of Ottawa. This site is also the location of several nuclear reactors. Most of them have been shut down, but the old National Research Universal 135 MW Reactor (constructed in 1957), is still operational for

the production of medical isotopes. Chalk River is the world's largest producer of medical isotopes it produces 40% of the world's medical isotopes. In the past, several serious accidents have happened at this site, causing radioactive contamination of the environment. Chalk River was the site of the world's first nuclear reactor meltdown in December 1952, and saw one again in 1958.


"The disposal site is only one kilometer from the Ottawa River, and we're worried about leakage," protestor Tammy Pizendewatch Twashi said. The river provides drinking water to the capital's more than one million residents and 140 nearby communities. "Water is life," said Chief Lance Haymond of the Kebaowek First Nation, speaking to a small crowd outside Parliament. "We need to

protect it." The tribe has launched one of several legal challenges of the project. Haymond is concerned that any river pollution could lead to health issues and spoil habitat for bears and a number of at-risk animal and plant species. The disposal facility at Chalk River Laboratories is to store up to one million cubic meters (35.3 million cubic feet) of nuclear waste.

The Canadian Nuclear Safety Commission said that it would store mostly contaminated

materials from environmental remediation and the decommissioning of the site in 2018, as well as from its past operations as a nuclear laboratory. Waste from hospitals and universities would also be shipped there to be stored in the "containment mound." The CNSC insisted that the project "is not likely to cause significant adverse environmental effects. Prime Minister Justin Trudeau declined to intervene. "This is not a political decision," he told the Commons, adding that it should be left to experts.

NUCLEAR NEWS

Source: <https://www.worldnuclearreport.org>

Compared to the last edition of the Nuclear Monitor ((913) , one construction started and two new reactors were connected to the grid.

Construction starts:

In Egypt construction of the fourth reactor at El Dabaa started.

New to grid:

Two reactors were connected to grid in the last weeks. In the UAE, Barakah 4 and in the US, Vogtle-4.